LoX: Low-Rank Extrapolation Robustifies LLM Safety Against Fine-tuning

By: Gabrel J. Perin, Runjin Chen, Xuxi Chen, Nina S. T. Hirata, Zhangyang Wang, Junyuan Hong

Large Language Models (LLMs) have become indispensable in real-world applications. However, their widespread adoption raises significant safety concerns, particularly in responding to socially harmful questions. Despite substantial efforts to improve model safety through alignment, aligned models can still have their safety protections undermined by subsequent fine-tuning - even when the additional training data appears benign. In this paper,... more
Large Language Models (LLMs) have become indispensable in real-world applications. However, their widespread adoption raises significant safety concerns, particularly in responding to socially harmful questions. Despite substantial efforts to improve model safety through alignment, aligned models can still have their safety protections undermined by subsequent fine-tuning - even when the additional training data appears benign. In this paper, we empirically demonstrate that this vulnerability stems from the sensitivity of safety-critical low-rank subspaces in LLM parameters to fine-tuning. Building on this insight, we propose a novel training-free method, termed Low-Rank Extrapolation (LoX), to enhance safety robustness by extrapolating the safety subspace of an aligned LLM. Our experimental results confirm the effectiveness of LoX, demonstrating significant improvements in robustness against both benign and malicious fine-tuning attacks while preserving the model's adaptability to new tasks. For instance, LoX leads to 11% to 54% absolute reductions in attack success rates (ASR) facing benign or malicious fine-tuning attacks. By investigating the ASR landscape of parameters, we attribute the success of LoX to that the extrapolation moves LLM parameters to a flatter zone, thereby less sensitive to perturbations. The code is available at github.com/VITA-Group/LoX. less
RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation

By: Xinnuo Xu, Rachel Lawrence, Kshitij Dubey, Atharva Pandey, Risa Ueno, Fabian Falck, Aditya V. Nori, Rahul Sharma, Amit Sharma, Javier Gonzalez

Recent Large Language Models (LLMs) have reported high accuracy on reasoning benchmarks. However, it is still unclear whether the observed results arise from true reasoning or from statistical recall of the training set. Inspired by the ladder of causation (Pearl, 2009) and its three levels (associations, interventions and counterfactuals), this paper introduces RE-IMAGINE, a framework to characterize a hierarchy of reasoning ability in LLMs,... more
Recent Large Language Models (LLMs) have reported high accuracy on reasoning benchmarks. However, it is still unclear whether the observed results arise from true reasoning or from statistical recall of the training set. Inspired by the ladder of causation (Pearl, 2009) and its three levels (associations, interventions and counterfactuals), this paper introduces RE-IMAGINE, a framework to characterize a hierarchy of reasoning ability in LLMs, alongside an automated pipeline to generate problem variations at different levels of the hierarchy. By altering problems in an intermediate symbolic representation, RE-IMAGINE generates arbitrarily many problems that are not solvable using memorization alone. Moreover, the framework is general and can work across reasoning domains, including math, code, and logic. We demonstrate our framework on four widely-used benchmarks to evaluate several families of LLMs, and observe reductions in performance when the models are queried with problem variations. These assessments indicate a degree of reliance on statistical recall for past performance, and open the door to further research targeting skills across the reasoning hierarchy. less
CAWR: Corruption-Averse Advantage-Weighted Regression for Robust Policy
  Optimization

By: Ranting Hu

Offline reinforcement learning (offline RL) algorithms often require additional constraints or penalty terms to address distribution shift issues, such as adding implicit or explicit policy constraints during policy optimization to reduce the estimation bias of functions. This paper focuses on a limitation of the Advantage-Weighted Regression family (AWRs), i.e., the potential for learning over-conservative policies due to data corruption, sp... more
Offline reinforcement learning (offline RL) algorithms often require additional constraints or penalty terms to address distribution shift issues, such as adding implicit or explicit policy constraints during policy optimization to reduce the estimation bias of functions. This paper focuses on a limitation of the Advantage-Weighted Regression family (AWRs), i.e., the potential for learning over-conservative policies due to data corruption, specifically the poor explorations in suboptimal offline data. We study it from two perspectives: (1) how poor explorations impact the theoretically optimal policy based on KL divergence, and (2) how such poor explorations affect the approximation of the theoretically optimal policy. We prove that such over-conservatism is mainly caused by the sensitivity of the loss function for policy optimization to poor explorations, and the proportion of poor explorations in offline datasets. To address this concern, we propose Corruption-Averse Advantage-Weighted Regression (CAWR), which incorporates a set of robust loss functions during policy optimization and an advantage-based prioritized experience replay method to filter out poor explorations. Numerical experiments on the D4RL benchmark show that our method can learn superior policies from suboptimal offline data, significantly enhancing the performance of policy optimization. less
Over-squashing in Spatiotemporal Graph Neural Networks

By: Ivan Marisca, Jacob Bamberger, Cesare Alippi, Michael M. Bronstein

Graph Neural Networks (GNNs) have achieved remarkable success across various domains. However, recent theoretical advances have identified fundamental limitations in their information propagation capabilities, such as over-squashing, where distant nodes fail to effectively exchange information. While extensively studied in static contexts, this issue remains unexplored in Spatiotemporal GNNs (STGNNs), which process sequences associated with g... more
Graph Neural Networks (GNNs) have achieved remarkable success across various domains. However, recent theoretical advances have identified fundamental limitations in their information propagation capabilities, such as over-squashing, where distant nodes fail to effectively exchange information. While extensively studied in static contexts, this issue remains unexplored in Spatiotemporal GNNs (STGNNs), which process sequences associated with graph nodes. Nonetheless, the temporal dimension amplifies this challenge by increasing the information that must be propagated. In this work, we formalize the spatiotemporal over-squashing problem and demonstrate its distinct characteristics compared to the static case. Our analysis reveals that counterintuitively, convolutional STGNNs favor information propagation from points temporally distant rather than close in time. Moreover, we prove that architectures that follow either time-and-space or time-then-space processing paradigms are equally affected by this phenomenon, providing theoretical justification for computationally efficient implementations. We validate our findings on synthetic and real-world datasets, providing deeper insights into their operational dynamics and principled guidance for more effective designs. less
AutoRule: Reasoning Chain-of-thought Extracted Rule-based Rewards
  Improve Preference Learning

By: Tevin Wang, Chenyan Xiong

Rule-based rewards offer a promising strategy for improving reinforcement learning from human feedback (RLHF), but current approaches often rely on manual rule engineering. We present AutoRule, a fully automated method for extracting rules from preference feedback and formulating them into rule-based rewards. AutoRule extraction operates in three stages: it leverages a reasoning model to interpret user preferences, identifies candidate rules ... more
Rule-based rewards offer a promising strategy for improving reinforcement learning from human feedback (RLHF), but current approaches often rely on manual rule engineering. We present AutoRule, a fully automated method for extracting rules from preference feedback and formulating them into rule-based rewards. AutoRule extraction operates in three stages: it leverages a reasoning model to interpret user preferences, identifies candidate rules from the reasoning chain of these interpretations, and synthesizes them into a unified rule set. Leveraging the finalized rule set, we employ language-model verifiers to compute the fraction of rules satisfied by each output, using this metric as an auxiliary reward alongside the learned reward model during policy optimization. Training a Llama-3-8B model with AutoRule results in a 28.6\% relative improvement in length-controlled win rate on AlpacaEval2.0, and a 6.1\% relative gain in second-turn performance on a held-out MT-Bench subset, compared to a GRPO baseline trained with the same learned reward model but without the rule-based auxiliary reward. Our analysis confirms that the extracted rules exhibit good agreement with dataset preference. We find that AutoRule demonstrates reduced reward hacking compared to a learned reward model when run over two episodes. Finally, our case study suggests that the extracted rules capture unique qualities valued in different datasets. The extracted rules are provided in the appendix, and the code is open-sourced at https://github.com/cxcscmu/AutoRule. less
RePCS: Diagnosing Data Memorization in LLM-Powered Retrieval-Augmented
  Generation

By: Le Vu Anh, Nguyen Viet Anh, Mehmet Dik, Luong Van Nghia

Retrieval-augmented generation (RAG) has become a common strategy for updating large language model (LLM) responses with current, external information. However, models may still rely on memorized training data, bypass the retrieved evidence, and produce contaminated outputs. We introduce Retrieval-Path Contamination Scoring (RePCS), a diagnostic method that detects such behavior without requiring model access or retraining. RePCS compares two... more
Retrieval-augmented generation (RAG) has become a common strategy for updating large language model (LLM) responses with current, external information. However, models may still rely on memorized training data, bypass the retrieved evidence, and produce contaminated outputs. We introduce Retrieval-Path Contamination Scoring (RePCS), a diagnostic method that detects such behavior without requiring model access or retraining. RePCS compares two inference paths: (i) a parametric path using only the query, and (ii) a retrieval-augmented path using both the query and retrieved context by computing the Kullback-Leibler (KL) divergence between their output distributions. A low divergence suggests that the retrieved context had minimal impact, indicating potential memorization. This procedure is model-agnostic, requires no gradient or internal state access, and adds only a single additional forward pass. We further derive PAC-style guarantees that link the KL threshold to user-defined false positive and false negative rates. On the Prompt-WNQA benchmark, RePCS achieves a ROC-AUC of 0.918. This result outperforms the strongest prior method by 6.5 percentage points while keeping latency overhead below 4.7% on an NVIDIA T4 GPU. RePCS offers a lightweight, black-box safeguard to verify whether a RAG system meaningfully leverages retrieval, making it especially valuable in safety-critical applications. less
4 SciCasts by .
SwarmAgentic: Towards Fully Automated Agentic System Generation via
  Swarm Intelligence

By: Yao Zhang, Chenyang Lin, Shijie Tang, Haokun Chen, Shijie Zhou, Yunpu Ma, Volker Tresp

The rapid progress of Large Language Models has advanced agentic systems in decision-making, coordination, and task execution. Yet, existing agentic system generation frameworks lack full autonomy, missing from-scratch agent generation, self-optimizing agent functionality, and collaboration, limiting adaptability and scalability. We propose SwarmAgentic, a framework for fully automated agentic system generation that constructs agentic systems... more
The rapid progress of Large Language Models has advanced agentic systems in decision-making, coordination, and task execution. Yet, existing agentic system generation frameworks lack full autonomy, missing from-scratch agent generation, self-optimizing agent functionality, and collaboration, limiting adaptability and scalability. We propose SwarmAgentic, a framework for fully automated agentic system generation that constructs agentic systems from scratch and jointly optimizes agent functionality and collaboration as interdependent components through language-driven exploration. To enable efficient search over system-level structures, SwarmAgentic maintains a population of candidate systems and evolves them via feedback-guided updates, drawing inspiration from Particle Swarm Optimization (PSO). We evaluate our method on six real-world, open-ended, and exploratory tasks involving high-level planning, system-level coordination, and creative reasoning. Given only a task description and an objective function, SwarmAgentic outperforms all baselines, achieving a +261.8% relative improvement over ADAS on the TravelPlanner benchmark, highlighting the effectiveness of full automation in structurally unconstrained tasks. This framework marks a significant step toward scalable and autonomous agentic system design, bridging swarm intelligence with fully automated system multi-agent generation. Our code is publicly released at https://yaoz720.github.io/SwarmAgentic/. less
Embodied Web Agents: Bridging Physical-Digital Realms for Integrated
  Agent Intelligence

By: Yining Hong, Rui Sun, Bingxuan Li, Xingcheng Yao, Maxine Wu, Alexander Chien, Da Yin, Ying Nian Wu, Zhecan James Wang, Kai-Wei Chang

AI agents today are mostly siloed - they either retrieve and reason over vast amount of digital information and knowledge obtained online; or interact with the physical world through embodied perception, planning and action - but rarely both. This separation limits their ability to solve tasks that require integrated physical and digital intelligence, such as cooking from online recipes, navigating with dynamic map data, or interpreting real-... more
AI agents today are mostly siloed - they either retrieve and reason over vast amount of digital information and knowledge obtained online; or interact with the physical world through embodied perception, planning and action - but rarely both. This separation limits their ability to solve tasks that require integrated physical and digital intelligence, such as cooking from online recipes, navigating with dynamic map data, or interpreting real-world landmarks using web knowledge. We introduce Embodied Web Agents, a novel paradigm for AI agents that fluidly bridge embodiment and web-scale reasoning. To operationalize this concept, we first develop the Embodied Web Agents task environments, a unified simulation platform that tightly integrates realistic 3D indoor and outdoor environments with functional web interfaces. Building upon this platform, we construct and release the Embodied Web Agents Benchmark, which encompasses a diverse suite of tasks including cooking, navigation, shopping, tourism, and geolocation - all requiring coordinated reasoning across physical and digital realms for systematic assessment of cross-domain intelligence. Experimental results reveal significant performance gaps between state-of-the-art AI systems and human capabilities, establishing both challenges and opportunities at the intersection of embodied cognition and web-scale knowledge access. All datasets, codes and websites are publicly available at our project page https://embodied-web-agent.github.io/. less
Doppelgänger Method: Breaking Role Consistency in LLM Agent via
  Prompt-based Transferable Adversarial Attack

By: Daewon Kang, YeongHwan Shin, Doyeon Kim, Kyu-Hwan Jung, Meong Hi Son

Since the advent of large language models, prompt engineering now enables the rapid, low-effort creation of diverse autonomous agents that are already in widespread use. Yet this convenience raises urgent concerns about the safety, robustness, and behavioral consistency of the underlying prompts, along with the pressing challenge of preventing those prompts from being exposed to user's attempts. In this paper, we propose the ''Doppelg\"anger ... more
Since the advent of large language models, prompt engineering now enables the rapid, low-effort creation of diverse autonomous agents that are already in widespread use. Yet this convenience raises urgent concerns about the safety, robustness, and behavioral consistency of the underlying prompts, along with the pressing challenge of preventing those prompts from being exposed to user's attempts. In this paper, we propose the ''Doppelg\"anger method'' to demonstrate the risk of an agent being hijacked, thereby exposing system instructions and internal information. Next, we define the ''Prompt Alignment Collapse under Adversarial Transfer (PACAT)'' level to evaluate the vulnerability to this adversarial transfer attack. We also propose a ''Caution for Adversarial Transfer (CAT)'' prompt to counter the Doppelg\"anger method. The experimental results demonstrate that the Doppelg\"anger method can compromise the agent's consistency and expose its internal information. In contrast, CAT prompts enable effective defense against this adversarial attack. less
Train Once, Forget Precisely: Anchored Optimization for Efficient
  Post-Hoc Unlearning

By: Prabhav Sanga, Jaskaran Singh, Arun K. Dubey

As machine learning systems increasingly rely on data subject to privacy regulation, selectively unlearning specific information from trained models has become essential. In image classification, this involves removing the influence of particular training samples, semantic classes, or visual styles without full retraining. We introduce \textbf{Forget-Aligned Model Reconstruction (FAMR)}, a theoretically grounded and computationally efficient ... more
As machine learning systems increasingly rely on data subject to privacy regulation, selectively unlearning specific information from trained models has become essential. In image classification, this involves removing the influence of particular training samples, semantic classes, or visual styles without full retraining. We introduce \textbf{Forget-Aligned Model Reconstruction (FAMR)}, a theoretically grounded and computationally efficient framework for post-hoc unlearning in deep image classifiers. FAMR frames forgetting as a constrained optimization problem that minimizes a uniform-prediction loss on the forget set while anchoring model parameters to their original values via an $\ell_2$ penalty. A theoretical analysis links FAMR's solution to influence-function-based retraining approximations, with bounds on parameter and output deviation. Empirical results on class forgetting tasks using CIFAR-10 and ImageNet-100 demonstrate FAMR's effectiveness, with strong performance retention and minimal computational overhead. The framework generalizes naturally to concept and style erasure, offering a scalable and certifiable route to efficient post-hoc forgetting in vision models. less
GUI-Robust: A Comprehensive Dataset for Testing GUI Agent Robustness in
  Real-World Anomalies

By: Jingqi Yang, Zhilong Song, Jiawei Chen, Mingli Song, Sheng Zhou, linjun sun, Xiaogang Ouyang, Chun Chen, Can Wang

The development of high-quality datasets is crucial for benchmarking and advancing research in Graphical User Interface (GUI) agents. Despite their importance, existing datasets are often constructed under idealized conditions, overlooking the diverse anomalies frequently encountered in real-world deployments. To address this limitation, we introduce GUI-Robust, a novel dataset designed for comprehensive GUI agent evaluation, explicitly incor... more
The development of high-quality datasets is crucial for benchmarking and advancing research in Graphical User Interface (GUI) agents. Despite their importance, existing datasets are often constructed under idealized conditions, overlooking the diverse anomalies frequently encountered in real-world deployments. To address this limitation, we introduce GUI-Robust, a novel dataset designed for comprehensive GUI agent evaluation, explicitly incorporating seven common types of anomalies observed in everyday GUI interactions. Furthermore, we propose a semi-automated dataset construction paradigm that collects user action sequences from natural interactions via RPA tools and then generate corresponding step and task descriptions for these actions with the assistance of MLLMs. This paradigm significantly reduces annotation time cost by a factor of over 19 times. Finally, we assess state-of-the-art GUI agents using the GUI-Robust dataset, revealing their substantial performance degradation in abnormal scenarios. We anticipate that our work will highlight the importance of robustness in GUI agents and inspires more future research in this direction. The dataset and code are available at https://github.com/chessbean1/GUI-Robust.. less
Expressive Score-Based Priors for Distribution Matching with
  Geometry-Preserving Regularization

By: Ziyu Gong, Jim Lim, David I. Inouye

Distribution matching (DM) is a versatile domain-invariant representation learning technique that has been applied to tasks such as fair classification, domain adaptation, and domain translation. Non-parametric DM methods struggle with scalability and adversarial DM approaches suffer from instability and mode collapse. While likelihood-based methods are a promising alternative, they often impose unnecessary biases through fixed priors or requ... more
Distribution matching (DM) is a versatile domain-invariant representation learning technique that has been applied to tasks such as fair classification, domain adaptation, and domain translation. Non-parametric DM methods struggle with scalability and adversarial DM approaches suffer from instability and mode collapse. While likelihood-based methods are a promising alternative, they often impose unnecessary biases through fixed priors or require explicit density models (e.g., flows) that can be challenging to train. We address this limitation by introducing a novel approach to training likelihood-based DM using expressive score-based prior distributions. Our key insight is that gradient-based DM training only requires the prior's score function -- not its density -- allowing us to train the prior via denoising score matching. This approach eliminates biases from fixed priors (e.g., in VAEs), enabling more effective use of geometry-preserving regularization, while avoiding the challenge of learning an explicit prior density model (e.g., a flow-based prior). Our method also demonstrates better stability and computational efficiency compared to other diffusion-based priors (e.g., LSGM). Furthermore, experiments demonstrate superior performance across multiple tasks, establishing our score-based method as a stable and effective approach to distribution matching. Source code available at https://github.com/inouye-lab/SAUB. less
TGDPO: Harnessing Token-Level Reward Guidance for Enhancing Direct
  Preference Optimization

By: Mingkang Zhu, Xi Chen, Zhongdao Wang, Bei Yu, Hengshuang Zhao, Jiaya Jia

Recent advancements in reinforcement learning from human feedback have shown that utilizing fine-grained token-level reward models can substantially enhance the performance of Proximal Policy Optimization (PPO) in aligning large language models. However, it is challenging to leverage such token-level reward as guidance for Direct Preference Optimization (DPO), since DPO is formulated as a sequence-level bandit problem. To address this challen... more
Recent advancements in reinforcement learning from human feedback have shown that utilizing fine-grained token-level reward models can substantially enhance the performance of Proximal Policy Optimization (PPO) in aligning large language models. However, it is challenging to leverage such token-level reward as guidance for Direct Preference Optimization (DPO), since DPO is formulated as a sequence-level bandit problem. To address this challenge, this work decomposes the sequence-level PPO into a sequence of token-level proximal policy optimization problems and then frames the problem of token-level PPO with token-level reward guidance, from which closed-form optimal token-level policy and the corresponding token-level reward can be derived. Using the obtained reward and Bradley-Terry model, this work establishes a framework of computable loss functions with token-level reward guidance for DPO, and proposes a practical reward guidance based on the induced DPO reward. This formulation enables different tokens to exhibit varying degrees of deviation from reference policy based on their respective rewards. Experiment results demonstrate that our method achieves substantial performance improvements over DPO, with win rate gains of up to 7.5 points on MT-Bench, 6.2 points on AlpacaEval 2, and 4.3 points on Arena-Hard. Code is available at https://github.com/dvlab-research/TGDPO. less
Towards Desiderata-Driven Design of Visual Counterfactual Explainers

By: Sidney Bender, Jan Herrmann, Klaus-Robert Müller, Grégoire Montavon

Visual counterfactual explainers (VCEs) are a straightforward and promising approach to enhancing the transparency of image classifiers. VCEs complement other types of explanations, such as feature attribution, by revealing the specific data transformations to which a machine learning model responds most strongly. In this paper, we argue that existing VCEs focus too narrowly on optimizing sample quality or change minimality; they fail to cons... more
Visual counterfactual explainers (VCEs) are a straightforward and promising approach to enhancing the transparency of image classifiers. VCEs complement other types of explanations, such as feature attribution, by revealing the specific data transformations to which a machine learning model responds most strongly. In this paper, we argue that existing VCEs focus too narrowly on optimizing sample quality or change minimality; they fail to consider the more holistic desiderata for an explanation, such as fidelity, understandability, and sufficiency. To address this shortcoming, we explore new mechanisms for counterfactual generation and investigate how they can help fulfill these desiderata. We combine these mechanisms into a novel 'smooth counterfactual explorer' (SCE) algorithm and demonstrate its effectiveness through systematic evaluations on synthetic and real data. less
On the Hardness of Bandit Learning

By: Nataly Brukhim, Aldo Pacchiano, Miroslav Dudik, Robert Schapire

We study the task of bandit learning, also known as best-arm identification, under the assumption that the true reward function f belongs to a known, but arbitrary, function class F. We seek a general theory of bandit learnability, akin to the PAC framework for classification. Our investigation is guided by the following two questions: (1) which classes F are learnable, and (2) how they are learnable. For example, in the case of binary PAC cl... more
We study the task of bandit learning, also known as best-arm identification, under the assumption that the true reward function f belongs to a known, but arbitrary, function class F. We seek a general theory of bandit learnability, akin to the PAC framework for classification. Our investigation is guided by the following two questions: (1) which classes F are learnable, and (2) how they are learnable. For example, in the case of binary PAC classification, learnability is fully determined by a combinatorial dimension - the VC dimension- and can be attained via a simple algorithmic principle, namely, empirical risk minimization (ERM). In contrast to classical learning-theoretic results, our findings reveal limitations of learning in structured bandits, offering insights into the boundaries of bandit learnability. First, for the question of "which", we show that the paradigm of identifying the learnable classes via a dimension-like quantity fails for bandit learning. We give a simple proof demonstrating that no combinatorial dimension can characterize bandit learnability, even in finite classes, following a standard definition of dimension introduced by Ben-David et al. (2019). For the question of "how", we prove a computational hardness result: we construct a reward function class for which at most two queries are needed to find the optimal action, yet no algorithm can do so in polynomial time unless RP=NP. We also prove that this class admits efficient algorithms for standard algorithmic operations often considered in learning theory, such as an ERM. This implies that computational hardness is in this case inherent to the task of bandit learning. Beyond these results, we investigate additional themes such as learning under noise, trade-offs between noise models, and the relationship between query complexity and regret minimization. less
From Points to Places: Towards Human Mobility-Driven Spatiotemporal
  Foundation Models via Understanding Places

By: Mohammad Hashemi, Andreas Zufle

Capturing human mobility is essential for modeling how people interact with and move through physical spaces, reflecting social behavior, access to resources, and dynamic spatial patterns. To support scalable and transferable analysis across diverse geographies and contexts, there is a need for a generalizable foundation model for spatiotemporal data. While foundation models have transformed language and vision, they remain limited in handlin... more
Capturing human mobility is essential for modeling how people interact with and move through physical spaces, reflecting social behavior, access to resources, and dynamic spatial patterns. To support scalable and transferable analysis across diverse geographies and contexts, there is a need for a generalizable foundation model for spatiotemporal data. While foundation models have transformed language and vision, they remain limited in handling the unique challenges posed by the spatial, temporal, and semantic complexity of mobility data. This vision paper advocates for a new class of spatial foundation models that integrate geolocation semantics with human mobility across multiple scales. Central to our vision is a shift from modeling discrete points of interest to understanding places: dynamic, context-rich regions shaped by human behavior and mobility that may comprise many places of interest. We identify key gaps in adaptability, scalability, and multi-granular reasoning, and propose research directions focused on modeling places and enabling efficient learning. Our goal is to guide the development of scalable, context-aware models for next-generation geospatial intelligence. These models unlock powerful applications ranging from personalized place discovery and logistics optimization to urban planning, ultimately enabling smarter and more responsive spatial decision-making. less
AgentDistill: Training-Free Agent Distillation with Generalizable MCP
  Boxes

By: Jiahao Qiu, Xinzhe Juan, Yimin Wang, Ling Yang, Xuan Qi, Tongcheng Zhang, Jiacheng Guo, Yifu Lu, Zixin Yao, Hongru Wang, Shilong Liu, Xun Jiang, Liu Leqi, Mengdi Wang

While knowledge distillation has become a mature field for compressing large language models (LLMs) into smaller ones by aligning their outputs or internal representations, the distillation of LLM-based agents, which involve planning, memory, and tool use, remains relatively underexplored. Existing agent distillation methods typically replay full teacher trajectories or imitate step-by-step teacher tool usage, but they often struggle to train... more
While knowledge distillation has become a mature field for compressing large language models (LLMs) into smaller ones by aligning their outputs or internal representations, the distillation of LLM-based agents, which involve planning, memory, and tool use, remains relatively underexplored. Existing agent distillation methods typically replay full teacher trajectories or imitate step-by-step teacher tool usage, but they often struggle to train student agents to dynamically plan and act in novel environments. We propose AgentDistill, a novel, training-free agent distillation framework that enables efficient and scalable knowledge transfer via direct reuse of Model-Context-Protocols (MCPs), which are structured and reusable task-solving modules autonomously generated by teacher agents. The reuse of these distilled MCPs enables student agents to generalize their capabilities across domains and solve new problems with minimal supervision or human intervention. Experiments on biomedical and mathematical benchmarks demonstrate that our distilled student agents, built on small language models, can achieve performance comparable to advanced systems using large LLMs such as OctoTools (GPT-4o), highlighting the effectiveness of our framework in building scalable and cost-efficient intelligent agents. less