Exploring and Exploiting the Inherent Efficiency within Large Reasoning
  Models for Self-Guided Efficiency Enhancement

By: Weixiang Zhao, Jiahe Guo, Yang Deng, Xingyu Sui, Yulin Hu, Yanyan Zhao, Wanxiang Che, Bing Qin, Tat-Seng Chua, Ting Liu

Recent advancements in large reasoning models (LRMs) have significantly enhanced language models' capabilities in complex problem-solving by emulating human-like deliberative thinking. However, these models often exhibit overthinking (i.e., the generation of unnecessarily verbose and redundant content), which hinders efficiency and inflates inference cost. In this work, we explore the representational and behavioral origins of this inefficien... more
Recent advancements in large reasoning models (LRMs) have significantly enhanced language models' capabilities in complex problem-solving by emulating human-like deliberative thinking. However, these models often exhibit overthinking (i.e., the generation of unnecessarily verbose and redundant content), which hinders efficiency and inflates inference cost. In this work, we explore the representational and behavioral origins of this inefficiency, revealing that LRMs inherently possess the capacity for more concise reasoning. Empirical analyses show that correct reasoning paths vary significantly in length, and the shortest correct responses often suffice, indicating untapped efficiency potential. Exploiting these findings, we propose two lightweight methods to enhance LRM efficiency. First, we introduce Efficiency Steering, a training-free activation steering technique that modulates reasoning behavior via a single direction in the model's representation space. Second, we develop Self-Rewarded Efficiency RL, a reinforcement learning framework that dynamically balances task accuracy and brevity by rewarding concise correct solutions. Extensive experiments on seven LRM backbones across multiple mathematical reasoning benchmarks demonstrate that our methods significantly reduce reasoning length while preserving or improving task performance. Our results highlight that reasoning efficiency can be improved by leveraging and guiding the intrinsic capabilities of existing models in a self-guided manner. less
SwarmAgentic: Towards Fully Automated Agentic System Generation via
  Swarm Intelligence

By: Yao Zhang, Chenyang Lin, Shijie Tang, Haokun Chen, Shijie Zhou, Yunpu Ma, Volker Tresp

The rapid progress of Large Language Models has advanced agentic systems in decision-making, coordination, and task execution. Yet, existing agentic system generation frameworks lack full autonomy, missing from-scratch agent generation, self-optimizing agent functionality, and collaboration, limiting adaptability and scalability. We propose SwarmAgentic, a framework for fully automated agentic system generation that constructs agentic systems... more
The rapid progress of Large Language Models has advanced agentic systems in decision-making, coordination, and task execution. Yet, existing agentic system generation frameworks lack full autonomy, missing from-scratch agent generation, self-optimizing agent functionality, and collaboration, limiting adaptability and scalability. We propose SwarmAgentic, a framework for fully automated agentic system generation that constructs agentic systems from scratch and jointly optimizes agent functionality and collaboration as interdependent components through language-driven exploration. To enable efficient search over system-level structures, SwarmAgentic maintains a population of candidate systems and evolves them via feedback-guided updates, drawing inspiration from Particle Swarm Optimization (PSO). We evaluate our method on six real-world, open-ended, and exploratory tasks involving high-level planning, system-level coordination, and creative reasoning. Given only a task description and an objective function, SwarmAgentic outperforms all baselines, achieving a +261.8% relative improvement over ADAS on the TravelPlanner benchmark, highlighting the effectiveness of full automation in structurally unconstrained tasks. This framework marks a significant step toward scalable and autonomous agentic system design, bridging swarm intelligence with fully automated system multi-agent generation. Our code is publicly released at https://yaoz720.github.io/SwarmAgentic/. less
Embodied Web Agents: Bridging Physical-Digital Realms for Integrated
  Agent Intelligence

By: Yining Hong, Rui Sun, Bingxuan Li, Xingcheng Yao, Maxine Wu, Alexander Chien, Da Yin, Ying Nian Wu, Zhecan James Wang, Kai-Wei Chang

AI agents today are mostly siloed - they either retrieve and reason over vast amount of digital information and knowledge obtained online; or interact with the physical world through embodied perception, planning and action - but rarely both. This separation limits their ability to solve tasks that require integrated physical and digital intelligence, such as cooking from online recipes, navigating with dynamic map data, or interpreting real-... more
AI agents today are mostly siloed - they either retrieve and reason over vast amount of digital information and knowledge obtained online; or interact with the physical world through embodied perception, planning and action - but rarely both. This separation limits their ability to solve tasks that require integrated physical and digital intelligence, such as cooking from online recipes, navigating with dynamic map data, or interpreting real-world landmarks using web knowledge. We introduce Embodied Web Agents, a novel paradigm for AI agents that fluidly bridge embodiment and web-scale reasoning. To operationalize this concept, we first develop the Embodied Web Agents task environments, a unified simulation platform that tightly integrates realistic 3D indoor and outdoor environments with functional web interfaces. Building upon this platform, we construct and release the Embodied Web Agents Benchmark, which encompasses a diverse suite of tasks including cooking, navigation, shopping, tourism, and geolocation - all requiring coordinated reasoning across physical and digital realms for systematic assessment of cross-domain intelligence. Experimental results reveal significant performance gaps between state-of-the-art AI systems and human capabilities, establishing both challenges and opportunities at the intersection of embodied cognition and web-scale knowledge access. All datasets, codes and websites are publicly available at our project page https://embodied-web-agent.github.io/. less
Doppelgänger Method: Breaking Role Consistency in LLM Agent via
  Prompt-based Transferable Adversarial Attack

By: Daewon Kang, YeongHwan Shin, Doyeon Kim, Kyu-Hwan Jung, Meong Hi Son

Since the advent of large language models, prompt engineering now enables the rapid, low-effort creation of diverse autonomous agents that are already in widespread use. Yet this convenience raises urgent concerns about the safety, robustness, and behavioral consistency of the underlying prompts, along with the pressing challenge of preventing those prompts from being exposed to user's attempts. In this paper, we propose the ''Doppelg\"anger ... more
Since the advent of large language models, prompt engineering now enables the rapid, low-effort creation of diverse autonomous agents that are already in widespread use. Yet this convenience raises urgent concerns about the safety, robustness, and behavioral consistency of the underlying prompts, along with the pressing challenge of preventing those prompts from being exposed to user's attempts. In this paper, we propose the ''Doppelg\"anger method'' to demonstrate the risk of an agent being hijacked, thereby exposing system instructions and internal information. Next, we define the ''Prompt Alignment Collapse under Adversarial Transfer (PACAT)'' level to evaluate the vulnerability to this adversarial transfer attack. We also propose a ''Caution for Adversarial Transfer (CAT)'' prompt to counter the Doppelg\"anger method. The experimental results demonstrate that the Doppelg\"anger method can compromise the agent's consistency and expose its internal information. In contrast, CAT prompts enable effective defense against this adversarial attack. less
GUI-Robust: A Comprehensive Dataset for Testing GUI Agent Robustness in
  Real-World Anomalies

By: Jingqi Yang, Zhilong Song, Jiawei Chen, Mingli Song, Sheng Zhou, linjun sun, Xiaogang Ouyang, Chun Chen, Can Wang

The development of high-quality datasets is crucial for benchmarking and advancing research in Graphical User Interface (GUI) agents. Despite their importance, existing datasets are often constructed under idealized conditions, overlooking the diverse anomalies frequently encountered in real-world deployments. To address this limitation, we introduce GUI-Robust, a novel dataset designed for comprehensive GUI agent evaluation, explicitly incor... more
The development of high-quality datasets is crucial for benchmarking and advancing research in Graphical User Interface (GUI) agents. Despite their importance, existing datasets are often constructed under idealized conditions, overlooking the diverse anomalies frequently encountered in real-world deployments. To address this limitation, we introduce GUI-Robust, a novel dataset designed for comprehensive GUI agent evaluation, explicitly incorporating seven common types of anomalies observed in everyday GUI interactions. Furthermore, we propose a semi-automated dataset construction paradigm that collects user action sequences from natural interactions via RPA tools and then generate corresponding step and task descriptions for these actions with the assistance of MLLMs. This paradigm significantly reduces annotation time cost by a factor of over 19 times. Finally, we assess state-of-the-art GUI agents using the GUI-Robust dataset, revealing their substantial performance degradation in abnormal scenarios. We anticipate that our work will highlight the importance of robustness in GUI agents and inspires more future research in this direction. The dataset and code are available at https://github.com/chessbean1/GUI-Robust.. less
From Points to Places: Towards Human Mobility-Driven Spatiotemporal
  Foundation Models via Understanding Places

By: Mohammad Hashemi, Andreas Zufle

Capturing human mobility is essential for modeling how people interact with and move through physical spaces, reflecting social behavior, access to resources, and dynamic spatial patterns. To support scalable and transferable analysis across diverse geographies and contexts, there is a need for a generalizable foundation model for spatiotemporal data. While foundation models have transformed language and vision, they remain limited in handlin... more
Capturing human mobility is essential for modeling how people interact with and move through physical spaces, reflecting social behavior, access to resources, and dynamic spatial patterns. To support scalable and transferable analysis across diverse geographies and contexts, there is a need for a generalizable foundation model for spatiotemporal data. While foundation models have transformed language and vision, they remain limited in handling the unique challenges posed by the spatial, temporal, and semantic complexity of mobility data. This vision paper advocates for a new class of spatial foundation models that integrate geolocation semantics with human mobility across multiple scales. Central to our vision is a shift from modeling discrete points of interest to understanding places: dynamic, context-rich regions shaped by human behavior and mobility that may comprise many places of interest. We identify key gaps in adaptability, scalability, and multi-granular reasoning, and propose research directions focused on modeling places and enabling efficient learning. Our goal is to guide the development of scalable, context-aware models for next-generation geospatial intelligence. These models unlock powerful applications ranging from personalized place discovery and logistics optimization to urban planning, ultimately enabling smarter and more responsive spatial decision-making. less
AgentDistill: Training-Free Agent Distillation with Generalizable MCP
  Boxes

By: Jiahao Qiu, Xinzhe Juan, Yimin Wang, Ling Yang, Xuan Qi, Tongcheng Zhang, Jiacheng Guo, Yifu Lu, Zixin Yao, Hongru Wang, Shilong Liu, Xun Jiang, Liu Leqi, Mengdi Wang

While knowledge distillation has become a mature field for compressing large language models (LLMs) into smaller ones by aligning their outputs or internal representations, the distillation of LLM-based agents, which involve planning, memory, and tool use, remains relatively underexplored. Existing agent distillation methods typically replay full teacher trajectories or imitate step-by-step teacher tool usage, but they often struggle to train... more
While knowledge distillation has become a mature field for compressing large language models (LLMs) into smaller ones by aligning their outputs or internal representations, the distillation of LLM-based agents, which involve planning, memory, and tool use, remains relatively underexplored. Existing agent distillation methods typically replay full teacher trajectories or imitate step-by-step teacher tool usage, but they often struggle to train student agents to dynamically plan and act in novel environments. We propose AgentDistill, a novel, training-free agent distillation framework that enables efficient and scalable knowledge transfer via direct reuse of Model-Context-Protocols (MCPs), which are structured and reusable task-solving modules autonomously generated by teacher agents. The reuse of these distilled MCPs enables student agents to generalize their capabilities across domains and solve new problems with minimal supervision or human intervention. Experiments on biomedical and mathematical benchmarks demonstrate that our distilled student agents, built on small language models, can achieve performance comparable to advanced systems using large LLMs such as OctoTools (GPT-4o), highlighting the effectiveness of our framework in building scalable and cost-efficient intelligent agents. less
Optimizing Length Compression in Large Reasoning Models

By: Zhengxiang Cheng, Dongping Chen, Mingyang Fu, Tianyi Zhou

Large Reasoning Models (LRMs) have achieved remarkable success, yet they often suffer from producing unnecessary and verbose reasoning chains. We identify a core aspect of this issue as "invalid thinking" -- models tend to repeatedly double-check their work after having derived the correct answer. To address this specific inefficiency, we move beyond the general principles of Efficacy and Efficiency to propose two new, fine-grained principles... more
Large Reasoning Models (LRMs) have achieved remarkable success, yet they often suffer from producing unnecessary and verbose reasoning chains. We identify a core aspect of this issue as "invalid thinking" -- models tend to repeatedly double-check their work after having derived the correct answer. To address this specific inefficiency, we move beyond the general principles of Efficacy and Efficiency to propose two new, fine-grained principles: Brevity, which advocates for eliminating redundancy, and Sufficiency, which ensures critical reasoning steps are preserved. Guided by these principles, we introduce LC-R1, a post-training method based on Group Relative Policy Optimization (GRPO). LC-R1 employs a novel combination of a Length Reward for overall conciseness and a Compress Reward that is specifically designed to remove the invalid portion of the thinking process. Extensive experiments on multiple reasoning benchmarks demonstrate that LC-R1 achieves a significant reduction in sequence length (~50%) with only a marginal (~2%) drop in accuracy, achieving a favorable trade-off point on the Pareto frontier that prioritizes high compression. Our analysis further validates the robustness of LC-R1 and provides valuable insights for developing more powerful yet computationally efficient LRMs. Our code is released at https://github.com/zxiangx/LC-R1. less
Stream-Omni: Simultaneous Multimodal Interactions with Large
  Language-Vision-Speech Model

By: Shaolei Zhang, Shoutao Guo, Qingkai Fang, Yan Zhou, Yang Feng

The emergence of GPT-4o-like large multimodal models (LMMs) has raised the exploration of integrating text, vision, and speech modalities to support more flexible multimodal interaction. Existing LMMs typically concatenate representation of modalities along the sequence dimension and feed them into a large language model (LLM) backbone. While sequence-dimension concatenation is straightforward for modality integration, it often relies heavily... more
The emergence of GPT-4o-like large multimodal models (LMMs) has raised the exploration of integrating text, vision, and speech modalities to support more flexible multimodal interaction. Existing LMMs typically concatenate representation of modalities along the sequence dimension and feed them into a large language model (LLM) backbone. While sequence-dimension concatenation is straightforward for modality integration, it often relies heavily on large-scale data to learn modality alignments. In this paper, we aim to model the relationships between modalities more purposefully, thereby achieving more efficient and flexible modality alignments. To this end, we propose Stream-Omni, a large language-vision-speech model with efficient modality alignments, which can simultaneously support interactions under various modality combinations. Stream-Omni employs LLM as the backbone and aligns the vision and speech to the text based on their relationships. For vision that is semantically complementary to text, Stream-Omni uses sequence-dimension concatenation to achieve vision-text alignment. For speech that is semantically consistent with text, Stream-Omni introduces a CTC-based layer-dimension mapping to achieve speech-text alignment. In this way, Stream-Omni can achieve modality alignments with less data (especially speech), enabling the transfer of text capabilities to other modalities. Experiments on various benchmarks demonstrate that Stream-Omni achieves strong performance on visual understanding, speech interaction, and vision-grounded speech interaction tasks. Owing to the layer-dimensional mapping, Stream-Omni can simultaneously provide intermediate text outputs (such as ASR transcriptions and model responses) during speech interaction, offering users a comprehensive multimodal experience. less
Avoiding Obfuscation with Prover-Estimator Debate

By: Jonah Brown-Cohen, Geoffrey Irving, Georgios Piliouras

Training powerful AI systems to exhibit desired behaviors hinges on the ability to provide accurate human supervision on increasingly complex tasks. A promising approach to this problem is to amplify human judgement by leveraging the power of two competing AIs in a debate about the correct solution to a given problem. Prior theoretical work has provided a complexity-theoretic formalization of AI debate, and posed the problem of designing prot... more
Training powerful AI systems to exhibit desired behaviors hinges on the ability to provide accurate human supervision on increasingly complex tasks. A promising approach to this problem is to amplify human judgement by leveraging the power of two competing AIs in a debate about the correct solution to a given problem. Prior theoretical work has provided a complexity-theoretic formalization of AI debate, and posed the problem of designing protocols for AI debate that guarantee the correctness of human judgements for as complex a class of problems as possible. Recursive debates, in which debaters decompose a complex problem into simpler subproblems, hold promise for growing the class of problems that can be accurately judged in a debate. However, existing protocols for recursive debate run into the obfuscated arguments problem: a dishonest debater can use a computationally efficient strategy that forces an honest opponent to solve a computationally intractable problem to win. We mitigate this problem with a new recursive debate protocol that, under certain stability assumptions, ensures that an honest debater can win with a strategy requiring computational efficiency comparable to their opponent. less