Unsupervised Voice Activity Detection by Modeling Source and System  Information using Zero Frequency Filtering

By: Eklavya Sarkar, RaviShankar Prasad, Mathew Magimai. -Doss

Voice activity detection (VAD) is an important pre-processing step for speech technology applications. The task consists of deriving segment boundaries of audio signals which contain voicing information. In recent years, it has been shown that voice source and vocal tract system information can be extracted using zero-frequency filtering (ZFF) without making any explicit model assumptions about the speech signal. This paper investigates the p... more
Voice activity detection (VAD) is an important pre-processing step for speech technology applications. The task consists of deriving segment boundaries of audio signals which contain voicing information. In recent years, it has been shown that voice source and vocal tract system information can be extracted using zero-frequency filtering (ZFF) without making any explicit model assumptions about the speech signal. This paper investigates the potential of zero-frequency filtering for jointly modeling voice source and vocal tract system information, and proposes two approaches for VAD. The first approach demarcates voiced regions using a composite signal composed of different zero-frequency filtered signals. The second approach feeds the composite signal as input to the rVAD algorithm. These approaches are compared with other supervised and unsupervised VAD methods in the literature, and are evaluated on the Aurora-2 database, across a range of SNRs (20 to -5 dB). Our studies show that the proposed ZFF-based methods perform comparable to state-of-art VAD methods and are more invariant to added degradation and different channel characteristics. less
Model-free Quantum Gate Design and Calibration using Deep Reinforcement
  Learning

By: Omar Shindi, Qi Yu, Parth Girdhar, Daoyi Dong

High-fidelity quantum gate design is important for various quantum technologies, such as quantum computation and quantum communication. Numerous control policies for quantum gate design have been proposed given a dynamical model of the quantum system of interest. However, a quantum system is often highly sensitive to noise, and obtaining its accurate modeling can be difficult for many practical applications. Thus, the control policy based o... more
High-fidelity quantum gate design is important for various quantum technologies, such as quantum computation and quantum communication. Numerous control policies for quantum gate design have been proposed given a dynamical model of the quantum system of interest. However, a quantum system is often highly sensitive to noise, and obtaining its accurate modeling can be difficult for many practical applications. Thus, the control policy based on a quantum system model may be unpractical for quantum gate design. Also, quantum measurements collapse quantum states, which makes it challenging to obtain information through measurements during the control process. In this paper, we propose a novel training framework using deep reinforcement learning for model-free quantum control. The proposed framework relies only on the measurement at the end of the control process and offers the ability to find the optimal control policy without access to quantum systems during the learning process. The effectiveness of the proposed technique is numerically demonstrated for model-free quantum gate design and quantum gate calibration using off-policy reinforcement learning algorithms. less
AI-coherent data-driven forecasting model for a combined cycle power
  plant

By: Mir Sayed Shah Danish, Zahra Nazari, Tomonobu Senjyu

This study investigates the transformation of energy models to align with machine learning requirements as a promising tool for optimizing the operation of combined cycle power plants (CCPPs). By modeling energy production as a function of environmental and control variables, this methodology offers an innovative way to achieve energy-efficient power generation in the context of the data-driven application. This study focuses on developing ... more
This study investigates the transformation of energy models to align with machine learning requirements as a promising tool for optimizing the operation of combined cycle power plants (CCPPs). By modeling energy production as a function of environmental and control variables, this methodology offers an innovative way to achieve energy-efficient power generation in the context of the data-driven application. This study focuses on developing a thorough AI-coherent modeling approach for CCPP optimization, preferring an interdisciplinary perspective and coming up with a comprehensive, insightful analysis. The proposed numerical model using Broyden Fletcher Goldfarb Shanno (BFGS) algorithm enhances efficiency by simulating various operating scenarios and adjusting optimal parameters, leading to a high yield power generation of 2.23% increase from 452 MW to 462.1 MW by optimizing the environmental factors. This study deals with data-driven modeling based on historical data to make predictions without prior knowledge of the system's parameter, demonstrating several merits in identifying patterns that can be difficult for human analysts to detect, high accuracy when trained on large datasets, and the potential to improve over time with new data. The proposed modeling approach and methodology can be expanded as a valuable tool for forecasting and decision-making in complex energy systems. less
Mobile Human Ad Hoc Networks: A Communication Engineering Viewpoint on  Interhuman Airborne Pathogen Transmission

By: Fatih Gulec, Baris Atakan, Falko Dressler

A number of transmission models for airborne pathogens transmission, as required to understand airborne infectious diseases such as COVID-19, have been proposed independently from each other, at different scales, and by researchers from various disciplines. We propose a communication engineering approach that blends different disciplines such as epidemiology, biology, medicine, and fluid dynamics. The aim is to present a unified framework u... more
A number of transmission models for airborne pathogens transmission, as required to understand airborne infectious diseases such as COVID-19, have been proposed independently from each other, at different scales, and by researchers from various disciplines. We propose a communication engineering approach that blends different disciplines such as epidemiology, biology, medicine, and fluid dynamics. The aim is to present a unified framework using communication engineering, and to highlight future research directions for modeling the spread of infectious diseases through airborne transmission. We introduce the concept of mobile human ad hoc networks (MoHANETs), which exploits the similarity of airborne transmission-driven human groups with mobile ad hoc networks and uses molecular communication as the enabling paradigm. In the MoHANET architecture, a layered structure is employed where the infectious human emitting pathogen-laden droplets and the exposed human to these droplets are considered as the transmitter and receiver, respectively. Our proof-of-concept results, which we validated using empirical COVID-19 data, clearly demonstrate the ability of our MoHANET architecture to predict the dynamics of infectious diseases by considering the propagation of pathogen-laden droplets, their reception and mobility of humans. less