Surface-immobilized fibronectin conformation drives synovial fluid adsorption and film formation

Avatar
Poster
Voice is AI-generated
Connected to paperThis paper is a preprint and has not been certified by peer review

Surface-immobilized fibronectin conformation drives synovial fluid adsorption and film formation

Authors

Ahmed, S. T.; Honey, U.; Vitkova, L.; Pinto, D. R. J.; Flores, W.; Cutter, K. A.; Lunny, K. L.; Wen, Y.; De France, K.; Eguiluz, R. C. A.

Abstract

The articular cartilage extracellular matrix (ECM) is a complex network of biomolecules that includes fibronectin (FN). FN acts as an extracellular glue, controlling the assembly of other macromolecular constituents to the ECM. However, how FN participates in the binding and retention of synovial fluid components, the natural lubricant of articulated joints, to form a wear-protecting and lubricating film has not been established. This study reports on the role of FN and its molecular conformation in mediating macromolecular assembly of synovial fluid ad-layers. FN films as precursor films on functionalized surfaces, a model of FN's articular cartilage surface, adsorbed and retained different amounts of synovial fluid (SF). FN conformational changes were induced by depositing FN at pH 7 (extended state) or at pH 4 (unfolded state) on self-assembled monolayers on gold-coated quartz crystals, followed by adsorption of diluted SF (25%) onto FN precursor films. Mass density, thin film compliance, surface morphologies, and adsorbed FN films' secondary and tertiary structures reveal pH-induced differences. FN films deposited at pH 4 were thicker, more rigid, showed a more homogeneous morphology, and had altered alpha-helix and beta-sheet content, compared to FN films deposited at pH 7. FN precursor films deposited at pH 7 adsorbed and retained more synovial fluid than those at pH 4, revealing the importance of FN conformation at the articular cartilage surface to bind and maintain a thin lubricating and wear protective layer of synovial fluid constituents. This knowledge will enable a better understanding of the molecular regulation of articular cartilage-SF interface homeostasis and joint pathophysiology and identify molecular interactions and synergies between the articular cartilage ECM and SF to reveal the complexity of joint biotribology.

Follow Us on

0 comments

Add comment