Solar Orbiter's 2024 Major Flare Campaigns: An Overview
Solar Orbiter's 2024 Major Flare Campaigns: An Overview
Daniel F. Ryan, Laura A. Hayes, Hannah Collier, Graham S. Kerr, Andrew R. Inglis, David Williams, Andrew P. Walsh, Miho Janvier, Daniel Müller, David Berghmans, Cis Verbeeck, Emil Kraaikamp, Peter R. Young, Therese A. Kucera, Säm Krucker, Muriel Z. Stiefel, Daniele Calchetti, Katharine K. Reeves, Sabrina Savage, Vanessa Polito
AbstractSolar Orbiter conducted a series of flare-optimised observing campaigns in 2024 utilising the Major Flare Solar Orbiter Observing Plan (SOOP). Dedicated observations were performed during two distinct perihelia intervals in March/April and October, during which over 22 flares were observed, ranging from B- to M-class. These campaigns leveraged high-resolution and high-cadence observations from the mission's remote-sensing suite, including the High-Resolution EUV Imager (EUI/HRI_EUV), the Spectrometer/Telescope for Imaging X-rays (STIX), the Spectral Imaging of the Coronal Environment (SPICE) spectrometer, and the High Resolution Telescope of the Polarimetric and Helioseismic Imager (PHI/HRT), as well as coordinated ground-based and Earth-orbiting observations. EUI/HRI_EUV operating in short-exposure modes, provided two-second-cadence, non-saturated EUV images, revealing structures and dynamics on scales not previously observed. Simultaneously, STIX captured hard X-ray imaging and spectroscopy of accelerated electrons, while SPICE acquired EUV slit spectroscopy to probe chromospheric and coronal responses. Together, these observations offer an unprecedented view of magnetic reconnection, energy release, particle acceleration, and plasma heating across a broad range of temperatures and spatial scales. These campaigns have generated a rich dataset that will be the subject of numerous future studies addressing Solar Orbiter's top-level science goal: "How do solar eruptions produce energetic particle radiation that fills the heliosphere?". This paper presents the scientific motivations, operational planning, and observational strategies behind the 2024 flare campaigns, along with initial insights into the observed flares. We also discuss lessons learned for optimizing future Solar Orbiter Major Flare campaigns and provide a resource for researchers aiming to utilize these unique observations.